Python Roadmap (Beginner → Advanced)
The Python Roadmap provides a step-by-step learning path from beginner to advanced levels, covering Python fundamentals, data structures, OOP, file handling, web development, automation, data science, and real-world projects. It helps learners quickly understand what to study, build strong coding skills, and become job-ready in Python programming.
1. Basics of Python (Beginner)
- Objective: Understand Python syntax, variables, and basic programming constructs.
- Topics:
- Introduction to Python: What is Python, Features
- Installing Python & IDE setup (VS Code, PyCharm, Jupyter Notebook)
- Python Syntax, Comments, Indentation
- Variables & Data Types: int, float, str, bool, None
- Basic Operators: +, -, *, /, %, **, //, comparison operators
- Input/Output:
input()andprint() - Type conversion:
int(),str(),float()
2. Control Flow
- Objective: Learn to control the execution flow using conditions and loops.
- Topics:
- Conditional Statements:
if,elif,else - Loops:
forandwhile - Loop Control Statements:
break,continue,pass - List comprehensions & dictionary comprehensions
3. Functions & Modules
- Objective: Write reusable code and organize Python programs.
- Topics:
- Defining functions using
def - Function arguments: positional, keyword, default, arbitrary
*args,**kwargs - Return values
- Lambda functions
- Built-in functions:
len(),range(),type(),enumerate() - Modules & Packages: Importing modules (
import,from ... import ...) - Standard library overview:
math,random,datetime,os,sys
4. Data Structures
- Objective: Handle and manipulate data efficiently.
- Topics:
- Lists: creation, indexing, slicing, methods (
append(),pop(),extend()) - Tuples: immutability, unpacking
- Sets: unique elements, set operations
- Dictionaries: key-value pairs, methods (
get(),keys(),values(),items()) - Strings: indexing, slicing, formatting, string methods
- Advanced: Nested data structures
5. Object-Oriented Programming (OOP)
- Objective: Understand classes, objects, and OOP concepts.
- Topics:
- Classes & Objects
- Attributes & Methods
__init__()constructor- Encapsulation: private/public attributes
- Inheritance & Polymorphism
- Method Overriding
- Special Methods:
__str__(),__repr__(),__len__(), etc.
6. Exception Handling
- Objective: Write robust programs by handling errors gracefully.
- Topics:
- Errors in Python: Syntax vs Runtime
try,exceptblockselseandfinally- Raising exceptions using
raise - Custom exceptions
7. File Handling
- Objective: Work with files for reading/writing data.
- Topics:
- File modes:
r,w,a,rb,wb - Reading files:
read(),readline(),readlines() - Writing files:
write(),writelines() - Working with JSON:
jsonmodule
8. Python Libraries (Intermediate)
- Objective: Learn popular libraries for practical tasks.
- Topics:
- NumPy: arrays, vectorized operations
- Pandas: DataFrames, Series, CSV/Excel operations
- Matplotlib / Seaborn: Data visualization
- Requests: HTTP requests, APIs
- BeautifulSoup / Scrapy: Web scraping
9. Advanced Python Concepts
- Objective: Master Python for larger projects.
- Topics:
- Iterators & Generators:
iter(),next(),yield - Decorators: function decorators, class decorators
- Context Managers:
withstatement - Regular Expressions:
remodule - Multithreading & Multiprocessing
- Logging and debugging
10. Working with Databases
- Objective: Store and retrieve data using Python.
- Topics:
- SQLite / MySQL / PostgreSQL connection using
sqlite3,SQLAlchemy - CRUD operations
- ORM basics
11. Web Development with Python
- Objective: Build web applications.
- Topics:
- Flask Basics: Routing, Templates, Forms
- Django Basics: Models, Views, Templates
- REST APIs with Flask/Django REST Framework
12. Automation & Scripting
- Objective: Automate repetitive tasks.
- Topics:
- Web scraping automation
- Excel automation with
openpyxl/pandas - PDF automation with
PyPDF2 - Sending emails:
smtplib
13. Testing & Best Practices
- Objective: Write reliable and maintainable code.
- Topics:
- Unit Testing:
unittest,pytest - Code formatting:
PEP8,Black - Version control with Git/GitHub
- Virtual environments:
venv,pipenv
14. Python for Data Science & AI (Optional Advanced Track)
- Objective: Use Python for data analysis and machine learning.
- Topics:
- Data analysis: Pandas, NumPy
- Visualization: Matplotlib, Seaborn, Plotly
- Machine Learning: scikit-learn
- Deep Learning: TensorFlow, PyTorch
- NLP: NLTK, spaCy
15. Projects for Practice
- Beginner: Calculator, To-Do App, Dice Rolling Simulator
- Intermediate: Web Scraper, REST API, Data Analysis Project
- Advanced: Chatbot, E-commerce Website, Machine Learning Model Deployment