Document Question-Answer System using Retrieval-Augmented Generation (RAG)


Learn how to build a Document Question-Answering System using Retrieval-Augmented Generation (RAG). This project integrates document retrieval and LLM-based generation for accurate, context-driven answers from large datasets.

1. Introduction

Building a Document Question-Answering (QA) system using Retrieval-Augmented Generation (RAG) helps in efficiently answering questions from a large document corpus. RAG combines retrieval of relevant documents with generative AI models (like GPT) to produce context-aware and accurate answers.

  1. RAG improves the output by retrieving relevant documents from a large knowledge base or document store before generating the answer.
  2. This project involves building a system where users can ask questions, and the system will retrieve relevant documents and generate an appropriate answer.

2. Tools & Technologies

  1. LLM Model: OpenAI's GPT-3 or GPT-4 (or Hugging Face’s GPT models).
  2. Vector Database: FAISS, Pinecone, or ChromaDB for document retrieval using embeddings.
  3. Backend: Python (Flask, FastAPI) for integrating retrieval and generation.
  4. Frontend (Optional): Simple HTML/CSS or frameworks like React for UI.

3. Project Steps

3.1 Step 1: Prepare Document Dataset

  1. Gather a corpus of documents you want to use for question-answering. This could be text files, PDFs, or web-scraped content.
  2. Preprocess the documents by extracting text and converting them into embeddings.

from openai import OpenAI

# Example for document embedding (OpenAI API)
openai.api_key = "YOUR_API_KEY"

def get_document_embedding(document):
response = openai.Embedding.create(
model="text-embedding-ada-002", # Use OpenAI’s embedding model
input=document
)
return response['data'][0]['embedding']

3.2 Step 2: Store Document Embeddings in a Vector Database

  1. Choose a vector database (e.g., FAISS, Pinecone, or ChromaDB) to store and index the document embeddings.
  2. Example using Pinecone for storing and retrieving document embeddings:

import pinecone
import numpy as np

# Initialize Pinecone
pinecone.init(api_key="YOUR_PINECONE_API_KEY", environment="us-west1-gcp")
index = pinecone.Index("document-index")

# Example documents and embeddings
documents = ["Document 1 content", "Document 2 content"]
embeddings = [get_document_embedding(doc) for doc in documents]

# Upsert embeddings into Pinecone
index.upsert(vectors=[(str(i), embedding) for i, embedding in enumerate(embeddings)])

# Query document with embedding
query_embedding = get_document_embedding("Question about the document")
results = index.query(query_embedding, top_k=3)
print(results)

3.3 Step 3: Build the Generative Model (LLM) for Answering

  1. Use an LLM (like GPT-3 or GPT-4) to generate answers based on retrieved documents.

import openai

openai.api_key = "YOUR_API_KEY"

def get_answer_from_gpt(question, documents):
context = " ".join([doc['text'] for doc in documents]) # Combine retrieved documents as context
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
response = openai.Completion.create(
model="text-davinci-003", # Or use GPT-4 if available
prompt=prompt,
max_tokens=200
)
return response.choices[0].text.strip()

3.4 Step 4: Integrate Retrieval & Generation

  1. Combine the retrieval and generation steps in a pipeline:
  2. Retrieve relevant documents based on the question embedding.
  3. Generate an answer using the context (retrieved documents) and the question.

def answer_question(question):
# Step 1: Retrieve relevant documents
query_embedding = get_document_embedding(question)
retrieved_docs = index.query(query_embedding, top_k=3)
# Step 2: Generate answer using GPT
answer = get_answer_from_gpt(question, retrieved_docs['matches'])
return answer

3.5 Step 5: Build the Frontend (Optional)

  1. Create a simple interface (using HTML/CSS or React) where users can type questions and get responses from the AI system.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document Q&A System</title>
</head>
<body>
<h2>Ask a Question</h2>
<input type="text" id="userQuestion" placeholder="Enter your question..." />
<button onclick="getAnswer()">Ask</button>

<div id="answer"></div>

<script>
async function getAnswer() {
const question = document.getElementById("userQuestion").value;
const response = await fetch('/ask-question', { // Backend endpoint
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ question })
});
const data = await response.json();
document.getElementById("answer").innerText = data.answer;
}
</script>
</body>
</html>

3.6 Step 6: Deploy the System

  1. Once your application is working locally, deploy it to cloud services like Heroku, AWS, or Google Cloud.

4. Features & Enhancements

  1. Contextual Answers: The system retrieves relevant documents and uses them to generate more accurate and detailed responses.
  2. Interactive UI: Implement a chat interface for a more interactive user experience.
  3. Multimodal Retrieval: Combine text, images, or other forms of data for multimodal document Q&A systems.

5. Best Practices

  1. Optimize Query Efficiency: Fine-tune the number of documents retrieved to balance between relevance and performance.
  2. Handle Ambiguities: Incorporate fallback strategies if the system can't find relevant documents.
  3. Token Management: Keep track of token usage in API calls to avoid exceeding limits.
  4. Data Preprocessing: Ensure documents are well-structured and free from unnecessary noise for better embeddings.

6. Outcome

After completing this project, beginners will be able to:

  1. Retrieve relevant documents using vector-based similarity search.
  2. Generate high-quality answers with RAG (Retrieval-Augmented Generation).
  3. Build a document-based QA system that is context-aware and accurate.
  4. Deploy a real-time question-answering system that can process user queries efficiently.